

Prof. Dr. Dina Hannebauer & Stefanie Martin

Nachhaltigkeit in der Produktentwicklung

Herzlich Willkommen!

Vorstellung Thema Produktentwicklung WS22/23 im 5. Semester Maschinenbau

Was erwartet die Studierenden?

- Sie fertigen eine Belegarbeit zu Schiffsantrieben an, dabei wird die Komplexität der Antriebsgestaltung realitätsnah betrachtet und geht über die übliche Fachliteratur hinaus mit Unterstützung der Siemens Energy.
- Sie arbeiten im engen Team innerhalb ihrer Gruppe und verteilen die Aufgaben gleichwertig. Teilergebnisse werden in den Präsenzterminen vorgestellt und schriftlich zusammengefasst
- Sie teilen sich selbstständig in Gruppen ein. Die Gruppengröße ist etwa gleich groß, maximal 6 Personen.

Vorstellung Thema Produktentwicklung WS22/23 im 5. Semester Maschinenbau

- Sie sind Mitglied eines Entwicklungsteams eines mittelständischen Unternehmens, welches ■ Was e Sie sind Mitglied eines Entwicklungsteams eines mittelständischen Unternehmens, weiches Elektromotoren und Antriebsstränge im Leistungsbereich bis 10MW herstellt. Entwicklung, Herstellung und Prüfung der Motoren erfolgt im Unternehmen. Komponenten der jeweiligen
- Arbeitsmaschinen oder weitere Maschinenteile eines Gesamtsystems werden mit Partnern Sie ferrealisiert. Die Geschäftsleitung ist im Gespräch mit der Meyerwerft für die Herstellung von die KCAntrieben für 3 Containerschiffe für den Transport von Erdgas in nördlichen Gewässern, und GLeistungsbereich des Antriebes 13MW. Aufgrund des seit einiger Zeit immer volatileren der S Branchenumfeldes (neue Technologien, neue Wettbewerber, Anspruch an Nachhaltigkeit
- und Umweltfreundlichkeit) möchten Sie der Geschäftsführung verschiedene Sie a Antriebsvarianten vorstellen. Anschließend soll im Team der Entwurf für 2 Antriebsvarianten
- Sie teilen sich selbststanung … etwa gleich groß, maximal 6 Personen.

ng

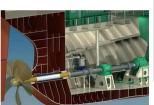
len

se ist

Zusammenarbeit mit Siemens Energy

3.5 Optimierte Propellerkonzepte

Hydrodynamische Beeinflussung:
• Drallrückgewinnung

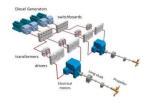

- An-/Abströmung
- Profilform
- Blattanzahl

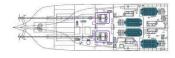
- Diattarizarii

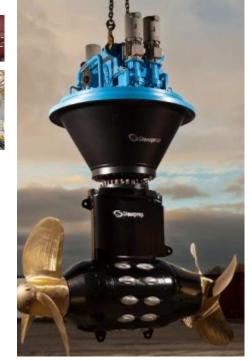
Restricted © Siemens Energy, 2022 | Christoph Balzer, TI EAD EU&AF N&MS POD EN 45

SIEMENS

Dieselmotor / Schiffsdiesel am Bsp. Containerschiff




Steen Tabel Scaling South Goor Day (Main Vigine Page)

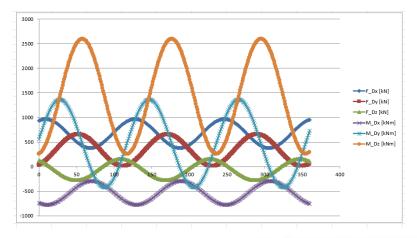

Barring Loading Phones South of Page Phones P

2.2 Dieselelektrischer Antrieb / Innenliegender Elektromotor

2022-10-05 Siemens Energy is a trademark licensed by Siemens At

Restricted © Siemens Energy, 2022 | Christoph Balzer, TI EAD EU&AF N&MS POD EN 19

Rollenspiel - Beispiel Lasten


Ersatzschwingungen, die auf die den Propeller, den Pod wirken werden z.B. mit folgenden Formeln angegeben:

$$F(\varphi) = a \cdot \sin(\frac{\varphi}{c} + d) + b$$
$$M(\varphi) = a \cdot \sin(\frac{\varphi}{c} + d) + b$$

Wichtig: Angabe des Koordinatensystems zur Definition des Kraftangriffs!

Mit a...Schwingungsamplitude, b...Mittelwert, c...Periodenlänge, d...Phasenverschiebung

a [kN]	293,85	322,47	215,7	241,79	893,66	1168,67
С	0,33	0,33	0,33	0,33	0,33	0,33
d	1,1	-1,2	2,1	-2,15	0,1	-1,5
φ [°]	F_Dx [kN]	F_Dy [kN]	F_Dz [kN]	M_Dx [kNm]	M_Dy [kNm]	M_Dz [kNm]
0	933,601283	31,7653559	127,42426	-737,303759	561,177131	258,477534
1	940,281314	38,3627622	121,407254	-744,017144	608,058906	264,477768
2	946,210296	45,7822403	114,88637	-750,145858	654,560071	273,721301
3	951,371646	54,0030412	107,879843	-755,672762	700,550583	286,182285
4	955,75093	63,0021748	100,407269	-760,582399	745,901825	301,825869
5	959,335903	72,7544744	92,4895444	-764,86104	790,486969	320,608307
6	962,116538	83,2326671	84,1488119	-768,496718	834,181331	342,477072
7	964,085058	94,4074498	75,408397	-771,479267	876,862716	367,371006
8	965,23596	106,247571	66,292743	-773,800346	918,411762	395,220492
9	965,566023	118,71992	56,8273422	-775,453462	958,712274	425,947646
10	965,074326	131,789617	47,0386655	-776,433994	997,65155	459,466539
11	963,762243	145,42011	36,9540875	-776,7392	1035,12069	495,683431
12	061 633111	150 573080	26 6018104	776 368226	1071 01/02	E3/ /Q70/1

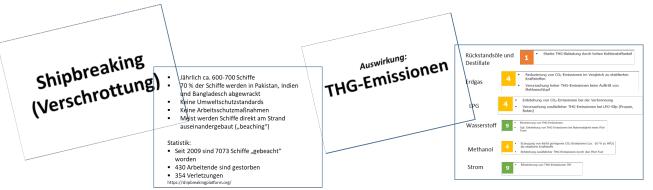
Lernziele

Lernziele:

Fachkompetenzen

- Anwenden des erlernten Fachwissens in Mechanik, Konstruktion, Materialkunde, Antriebstechnik auf ein neues Fachgebiet (Antriebe im Schiffbau)
- Kennenlernen, Verstehen, Anwenden der Methoden der PE
- Kennenlernen Grundlagen der Nachhaltigkeit im Maschinenbau

Soziale Kompetenzen


 Selbstständigkeit, Kommunikation in Fachsprache, Teamfähigkeit, Verantwortungsbewusstsein

Nachhaltigkeit Workshop im Rahmen einer Unterrichtseinheit

- Nachhaltige Entwicklung in der Schiffereibranche
- Aufgabe: Abschätzung von Umweltauswirkungen
 Teil 1

Welche Einflüsse ergeben sich durch den Schiffsantrieb

➤ Teil 2
Veränderungen, um Umweltauswirkungen zu verringern

Quelle: myclimate/Eigene Bearbeitung

Ergebnisse des Nachhaltigkeitsworkshops in Studienarbeiten

KENNZAHLEN Wert Elektroautos ats Firmenwagen. Die Summe aller Emissionen für die CO2-Bilanz1 ergibt einen Ausstr 634.200.015.980,49 CO2e Beschreibung pro Mitarbeiter in einem Jahr, wogegen die Einsparpotentiale der CO2-Bilanz2 nur 29 126.840,003196 CO₂e pro € Mitarbeitern 6.342.000.159.805 Bäume

ergeben sich aus den Antrieben. Deshalb sind in der folgenden Tal

Emissionen aufgelistet.

		- a II - mnansa.		
		^{951.300.023.971} €		
	Scope 1 3.420.000.000 t CO2e 1.45			
Emissionen aufgeb	Scop	e 2		

Der CO2-Rechner berechnet aus diesen Daten eine CO2-Kompensa.

Für die Bilanz1 müsste das Unternehmen über 6 Billionen Bäumen pflanzen,

Milliarden € ergeben würde. Bei Bilanz2 sind es dagegen fast 30 Millionen Bäume für ca. -

Emissionen relativ zu den Erklärung

Bezogen auf 100 Mitarbeiter Emissionen relativ zum

CO2-Bindung

Kompensationskosten

Bezogen auf 500.000.000,000 € Umsatz

Mit der Annahme, dass ein Baum im globalen Durchschnitt etwa 10kg CO2 pro Jahr absorbiert, wären zur Bindung Ihrer berechneten Gesamtemissionen

6.342.000.159.805 Bäume erforderlich. Weiterführende

Die Kosten für Kompensationsprojekte variieren stark. Bei der Annahme von durchschnittlich 15 EUR pro zu kom-