Dein Studium an der TH Wildau – praxisnah, persönlich, perspektivenreich

Studieren mit Zukunft

Anwendungsnahe Studiengänge Praxisorientierte Lehre

Lernen mit Erfolg

Kleine Gruppen für eine persönliche Lernatmosphäre Enger Kontakt zu den Lehrenden

Studieren weltweit

Auslandssemester an einer unserer Partnerhochschulen Internationale Erfahrungen für deine Karriere

Karriere im Blick

THCONNECT – die Karrieremesse für deinen Berufseinstieg Karriereberatung

Postanschrift

Technische Hochschule Wildau Hochschulring 1, 15745 Wildau

Studienberatung

\(\superstriangle +49 (0) 3375 / 508-688 \)

- studienorientierung@ th-wildau.de
- th-wildau.de/ studienorientierung

Studienfachberatung

Prof. Dr. Carolin Schmitz-Antoniak

% +49 (0) 3375 / 508 412

carolin.schmitz-antoniak@ th-wildau.de

Bewerbung und Immatrikulation

& +49 (0) 3375 / 508-666

- immatrikulation.pruefungen@ th-wildau.de
- \Box th-wildau.de/bewerbung

Mehr als nur Vorlesungen

Wohnen direkt auf dem Campus

Sport, Kultur und gemeinsame Events

Studieren mit Familie

Kinderbetreuung in eigener Kita Individuelle Unterstützung in allen Lebenslagen

Gesundes Studieren

Vielfältige Gesundheits- und Präventionsangebote Beratung durch

Beratung durch Hochschulberaterin und Präventionsärztin

Perfekte Lage

S-Bahnhof direkt am Campus (S8 und S46)

In nur 30 Minuten im Zentrum von Berlin

International Office

& +49 (0) 3375 / 508-378

- ☐ th-wildau.de/international-office

BAföG & Wohnen

Studierendenwerk West:Brandenburg

stwwb.de

Finanzierung:

- bafoeg@stwwb.de
 bafoeg@stwwb.de
 bafoeg@stwwb.de
 c
 bafoeg@stwwb.de
 c
 bafoeg@stwwb.de
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
 c
- stwwb.de/bafoeg-finanzen

Wohnen:

- □ stwwb.de/wohnen

PHYSIKALISCHE TECHNOLOGIEN/ **ENERGIESYSTEME**

ABSCHLUSS

Bachelor of Engineering (B.Eng.)

UMFANG

6 Semester (Vollzeit)

■ STUDIENFORM

Vollzeit, Teilzeit, Dual → siehe Flyer Duales Studium **ZULASSUNG** keine Zulassungsbeschränkung

BEGINN

Wintersemester

LEHRSPRACHE

Deutsch

Physikalische Technologien/Energiesysteme ist ein interdisziplinärer Studiengang, der Forschung und Entwicklung mit Ingenieurwissenschaften verbindet. Die Studierenden lernen, physikalische Prinzipien für die Entwicklung innovativer Technologien zu nutzen in Bereichen wie Lasertechnik, Optik, Sensorik, Mikro- und Nanotechnologie, Materialwissenschaften und regenerative Energietechnik. Praxisnahe Projekte und moderne Labore ermöglichen den direkten Anwendungsbezug. Der Abschluss qualifiziert für eine erfolgreiche berufliche Tätigkeit in Forschung oder Industrie und High-Tech-Branchen auf hohem naturwissenschaftlich-technischem Niveau.

Voraussetzung & Bewerbung

Infos zu allgemeinen Zugangsvoraussetzungen, Online-Bewerbung und Fristen:

th-wildau.de/bewerbung

Studienvorbereitung

Es wird empfohlen, rechtzeitig vor Studienbeginn zu prüfen, ob eine Teilnahme an studienvorbereitenden Kursen in Physik und/ oder Mathematik sinnvoll ist:

th-wildau.de/ studienvorbereitungskurse

Berufliche Tätigkeitsfelder

- Forschung und Entwicklung Gerätebau
- Automatisierungstechnik
- Medizintechnik
- Energieversorgung und
- -management
- Umweltschutz und Nachhaltigkeit
- Technische Sicherheit
- IT- und Softwareentwicklung

Passende Masterstudiengänge an der TH Wildau

- Photonik
- Maschinenbau
- Automatisierte Energiesysteme

Studiengangseite

Studienplan (Vollzeit)

1. SEMESTER

- Physikgrundlagen
- Konstruktionsgrundlagen
- Werkstofftechnik
- Fertigungsverfahren
- Mathematik I
- Informatik I
- Statik
- · Chemische Grundlagen

2. SEMESTER

- Physikgrundlagen
- Konstruktionsgrundlagen
- Werkstofftechnik
- Fertigungsverfahren
- Mathematik II
- Informatik II
- · Festigkeitslehre
- · Elektrotechnik / Elektronik / Antriebstechnik

3. SEMESTER

- Physik
- Thermodynamik / Wärmeübertragung
- Statistik
- · Regenerative Energietechnik
- Regelungstechnik / Sensorik
- · Oberflächentechnik & Vakuumtechnik
- Mikroprozessortechnik

4. SEMESTER

- Struktur der Materie
- · Mikro- / Nanotechnik
- Lasertechnik
- Regenerative Energietechnik
- · Automatisierungstechnik
- · Qualitätsmanagement
- Strömungslehre

5. SEMESTER

- Wahlpflichtmodul I
- · Wahlpflichtmodul II
- Wahlpflichtmodul III
- BWL & Recht
- Photonik / Techn. Optik / Spektroskopie
- Plasmatechnik

6. SEMESTER

- Betriebspraktikum
- Bachelorarbeit
- Berufspraktikum
- Kolloquium

WAHLPFLICHTMODULE

Wasserstoffbasierte Energiesysteme, Elektronenstrahlmikroanalyse, Geothermische Energie / Énergiespeichertechnik, Halbleitertechnik / Oberflächenanalytik, Kernenergietechnik und Rückbau, Laser- / Plasmatechnologien, Optikdesign, Photovoltaik